TABLE 2
Physical Properties of Perovskites with d² Configuration at the B Cations

Compound	T _N (OK)		Symm. 300	OK Remarks Re	fs.
BaMoO ₃	Pauli	> 0	Cubic	1	5
SrMoO ₃	Pauli	> 0	Cubic	n 7 x 0 2 x 2 2	5
CaMoO ₃	Pauli ^a	> 0	Ortho.		
SrCrO ₃	Pauli	> 0	Cubic		3
CaCrO ₃	90	< 0	Ortho.	$dT_{N}/dP = -0.23^{O} K/kbar$	
PbCrO ₃	240	< 0	Cubic	Collinear Type-G order $T < T_N$	2
LaV O ₃	137	< 0	(Cubic)	Tet. (c/a<1) \rightleftharpoons Cubic at T_N	4
YVO ₃	110	< 0	Ortho.	DTA anomaly at $T_t = 73^{\circ} K$	4

- b. ρ = electrical resistivity: Metallic (d ρ /dT > 0) vs semiconducting (d ρ /dT < 0).

FIG. 2 Electronic phase diagram for one electron per interacting orbital. Semiconducting for $b_{ij} < b_m$, metallic for $b_{ij} > b_m$.

introduces more covalency in the A-O bond, is largely compensated by the fact that lanthanum is far to the left of lead in the periodic table.

Comparison of Table 2 with the phase diagram of Fig. 2 places ${\rm SrCrO_3}$ and ${\rm A\,MoO_3}$ (A = Ca, Sr, Ba) in the domain ${\rm b_{ij}}>{\rm b_m}$, ${\rm PbCrO_3}$ and ${\rm CaCrO_3}$ in the transitional domain ${\rm b_c}<{\rm b_{ij}}<{\rm b_m}$, and the two vanadates ${\rm LaVO_3}$, ${\rm YVO_3}$ in the localized-electron domain ${\rm b_{ij}}<{\rm b_c}$. The fact that ${\rm PbCrO_3}$ remains cubic to lowest temperatures, even though it has a collinear type-G antiferromagnetic order [2], is consistent with collective d electrons. By contrast, ${\rm LaVO_3}$ exhibits a tetragonal (c/a < 1) to cubic (or O'-orthorhombic to O-orthorhombic, where distrotions toward orthorhombic symmetry are very small) transition [14], which is characteristic of spin-orbit coupling and localized d electrons having collinear spins. ${\rm YVO_3}$, which does not undergo a crystallographic transition at ${\rm T_N}$, exhibits a definite DTA anomaly at ${\rm 73^0K}<{\rm T_N}$, which suggests the anticipated O'-orthorhombic to O-orthorhombic transition. Finally, a ${\rm dT_N}/{\rm dP}<0$ for ${\rm CaCrO_3}$ is consistent with Fig. 2 and ${\rm b_c}<{\rm b_{ij}}<{\rm b_m}$, since ${\rm b_{ij}}$ should increase with a pressure-induced decreasing lattice parameter. (Changes in the lattice parameter by chemical means, as in ${\rm CaCrO_3}$ vs ${\rm SrCrO_3}$, have a smaller influence on ${\rm b_{ij}}$ than do the accompanying changes in A-O covalency.)

Two important conclusions emerge from these studies: (1) An intermediate domain $b_c < b_{ij} < b_m$ exists, but is quite narrow. The compounds PbCrO $_3$ and CaCrO $_3$ may be said to exhibit spontaneous collective-electron magnetism in contrast to the spontaneous localized-electron magnetism of YVO $_3$ and LaVO $_3$. (2) The fact that CaCrO $_3$ exhibits parasitic ferromagnetism demonstrates that antisymmetric exchange interactions may be a property of collective-electron magnetism as well as of localized-electron magnetism.

We would like to gratefully acknowledge the participation of N. Menyuk and K. Dwight in the determination of dT_N/dP , the assistance of D. Batson and T. Hilton in the preparation of $CaCrO_3$, and the thermogravimetric analysis by C. Anderson.

References

- 1. J. B. Goodenough, J. Appl. Phys. 37, 1415 (1966); 39, 403 (1968).
- 2. W. L. Roth and R. C. DeVries, J. Appl. Phys. 38, 951 (1967).
- 3. B. L. Chamberland, Solid State Comm. 5, 663 (1967).
- 4. R. C. DeVries and W. L. Roth, J. Am. Ceranic Soc. 51, 72 (1968).
- 5. S. Geller and E. A. Wood, Acta Cryst. 9, 563 (1956).